ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2713158
Implicit Methods For Timed Circuit Synthesis

Article - September 1998

Source: CiteSeer

CITATIONS READS
7 25

3authors, including:
N Erik Brunvand
University of Utah
117 PUBLICATIONS 1,342 CITATIONS

SEE PROFILE

All content following this page was uploaded by Erik Brunvand on 07 October 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/2713158_Implicit_Methods_For_Timed_Circuit_Synthesis?enrichId=rgreq-dda79a969cc7a8ceb168bc190203421c-XXX&enrichSource=Y292ZXJQYWdlOzI3MTMxNTg7QVM6MTQ5NjgxMjE2NjkyMjI1QDE0MTI2OTgxOTEyMTE%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2713158_Implicit_Methods_For_Timed_Circuit_Synthesis?enrichId=rgreq-dda79a969cc7a8ceb168bc190203421c-XXX&enrichSource=Y292ZXJQYWdlOzI3MTMxNTg7QVM6MTQ5NjgxMjE2NjkyMjI1QDE0MTI2OTgxOTEyMTE%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-dda79a969cc7a8ceb168bc190203421c-XXX&enrichSource=Y292ZXJQYWdlOzI3MTMxNTg7QVM6MTQ5NjgxMjE2NjkyMjI1QDE0MTI2OTgxOTEyMTE%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Erik_Brunvand?enrichId=rgreq-dda79a969cc7a8ceb168bc190203421c-XXX&enrichSource=Y292ZXJQYWdlOzI3MTMxNTg7QVM6MTQ5NjgxMjE2NjkyMjI1QDE0MTI2OTgxOTEyMTE%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Erik_Brunvand?enrichId=rgreq-dda79a969cc7a8ceb168bc190203421c-XXX&enrichSource=Y292ZXJQYWdlOzI3MTMxNTg7QVM6MTQ5NjgxMjE2NjkyMjI1QDE0MTI2OTgxOTEyMTE%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Utah?enrichId=rgreq-dda79a969cc7a8ceb168bc190203421c-XXX&enrichSource=Y292ZXJQYWdlOzI3MTMxNTg7QVM6MTQ5NjgxMjE2NjkyMjI1QDE0MTI2OTgxOTEyMTE%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Erik_Brunvand?enrichId=rgreq-dda79a969cc7a8ceb168bc190203421c-XXX&enrichSource=Y292ZXJQYWdlOzI3MTMxNTg7QVM6MTQ5NjgxMjE2NjkyMjI1QDE0MTI2OTgxOTEyMTE%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Erik_Brunvand?enrichId=rgreq-dda79a969cc7a8ceb168bc190203421c-XXX&enrichSource=Y292ZXJQYWdlOzI3MTMxNTg7QVM6MTQ5NjgxMjE2NjkyMjI1QDE0MTI2OTgxOTEyMTE%3D&el=1_x_10&_esc=publicationCoverPdf

IMPLICIT METHODS FOR TIMED CIRCUIT
SYNTHESIS

by

Robert Thacker

A thesis submitted to the faculty of

The University of Utah
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science
The University of Utah

June 1998

Copyright (©) Robert Thacker 1998

All Rights Reserved

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

SUPERVISORY COMMITTEE APPROVAL

of a thesis submitted by

Robert Thacker

This thesis has been read by each member of the following supervisory committee and
by majority vote has been found to be satisfactory.

Chair: Chris J. Myers

Ganesh C. Gopalakrishnan

Erik Brunvand

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

FINAL READING APPROVAL

To the Graduate Council of the University of Utah:

I have read the thesis of Robert Thacker in its final form and have
found that (1) its format, citations, and bibliographic style are consistent and acceptable;
(2) its illustrative materials including figures, tables, and charts are in place; and (3) the
final manuscript is satisfactory to the Supervisory Committee and is ready for submission
to The Graduate School.

Date Chris J. Myers
Chair, Supervisory Committee

Approved for the Major Department

Robert R. Kessler
Chair/Dean

Approved for the Graduate Council

Ann W. Hart
Dean of The Graduate School

ABSTRACT

The design and synthesis of asynchronous circuits is gaining importance in both
the industrial and academic worlds. Timed circuits are a class of asynchronous
circuits that incorporate explicit timing information in the specification. This
information is used throughout the synthesis procedure to optimize the design.
In order to synthesize a timed circuit, it is necessary to explore the timed state
space of the specification. The memory required to store the timed state space
of a complex specification can be prohibitive for large designs when explicit rep-
resentation methods are used. This thesis describes the application of BDDs and
MTBDDs to the representation of timed state spaces and the synthesis of timed
circuits. These implicit techniques significantly improve the memory efficiency of

timed state space exploration and allow more complex designs to be synthesized.

To Eeyore, for his constant support and companionship.

CONTENTS

ABSTRACT . . . iv

LIST OF FIGURES. e vii

ACKNOWLEDGEMENTS e ix
CHAPTERS

1. INTRODUCTION e 1

1.1 Related work 3

1.2 Contributions. 4

1.3 Outline. e 5

2. STATE SPACE EXPLORATION 6

2.1 Motivating example L 7

2.2 Explicit timed state space exploration 7

2.3 Implicit timed state space exploration 13

2.4 Implicit RSG representation 20

2.4.1 Reachable state space 20

2.4.2 NextState function 21

2.4.3 Existing Graphs. 25

2.5 Results. 27

3. SYNTHESIS 34

3.1 Excitation regions and quiescent states 34

3.2 Timed circuit implementation 37

3.2.1 Single cube covers 37

3.2.2 Multicube covers 38

3.3 Correct cover formulation 38

3.3.1 gC cover violations 39

3.3.2 SC cover violations 39

3.3.3 COITECt COVETS . v vttt e e e e e 40

3.4 Results. 41

4. CONCLUSIONS AND FUTURE WORK 48

REFERENCES 20

1.1
2.1
2.2
2.3
2.4
2.5

2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15

2.16

2.17

2.18
2.19
2.20
2.21
2.22
2.23

LIST OF FIGURES

ATACS design flow.
SPDOR (a)block diagram and (b)waveform.
CHP description of the SPDOR gate.
Self-precharging dynamic OR gate: timed ER structure.
RSG for the self-precharging dynamic OR gate..

A sample (a)Geometric region and (b) the corresponding constraint
MatrixX. . ..

Function to extract a BDD for the rule set R,,,.
MTBDD representation of (a) R,, and (b) the number “2”.
Function to create a MTBDD for the matrix M.
MTBDD representation of a geometric region matrix.
MTBDD representation of a timed state.
A false-terminated array holding (a)one, (b)two, or (c)three matrices.
Function to extract a BDD for the state s.
Self-precharging dynamic OR gate: BDD for S...................
SPDOR graphs:(a)incorrect enablings, (b)correct enablings.

SPDOR circuits: (a)using incorrect enablings, (b)using correct en-
ablings.

Simple diamond: (a)speed independent, (b)timed with incorrect en-
ablings, (¢)timed with correct enablings, and a transition to a “ghost
State .

Simple diamond:(a)original TERS fragment and (b)incorrect TERS
fragment.

Algorithm to find reachable state space S..........
Algorithm to find NextState relation N.
Algorithm to add transitions to ghost states.
A FIFO composed of lapb elements.
Timed ER structure for a lazy-active, passive buffer..

Max memory usage for (a)lapbs and (b)lapbs.,

4
7
8
10
11

14
15
16
18

19
22
22
22
23

24
26
26

2.24
3.1
3.2
3.3

3.4
3.5
3.6
3.7
3.8

BDD node usage (a) for state space and (b) overall. 33
Algorithm to find excitation regions. 36
SPDOR graphs:(a)incorrect enablings, (b)correct enablings. 36

Circuit types:(a) a standard C-element design, (b) a generalized C-
element design with weak-feedback, and (c) a fully-static gC design... 37

Fragment of an RSG for a standard OR gate. 39
Valid cover for ¢ 1 for a standard OR gate. 42
Valid cover for SPDOR feedback gate. 43
Valid circuit for SPDOR feedback gate. 44
Function to synthesize circuit from a reduced state graph G 47

viil

ACKNOWLEDGEMENTS

I would like to thank Dr. Chris J. Myers, my advisor, for the support and
direction he has given during the course of this project and for tolerating my
idiosyncrasies. I would also like to thank Dr. Ganesh C. Gopalakrishnan and
Dr. Erik Brunvand for serving on my supervisory committee and for their invaluable
assistance and comments on this research.

I am especially grateful to Dr. Steve Burns from Intel Corporation for inspiring
this line of research and for many insightful discussions. The timing analysis work
would have been impossible without the collaboration of Wendy Belluomini. I
would also like to thank Luli Josephson, Hans Jacobson, Hao Zheng, Brandon
Bachman, Eric Mercer, and Chris Krieger (my colleagues from the University of
Utah) for their illuminating comments on this research. I would like to extend my
thanks to Dr. David Long of AT&T Bell Labs for writing a great BDD package and
to Kurt Partridge for the use of his BDDTCL package.

My parents deserve a special mention for allowing me to haunt their basement
for the many years I have been in school.

This research has been brought to you by a grant from Intel Corporation, NSF
CAREER award MIP-9625014, and SRC contract # 97-D.J-487.

CHAPTER 1

INTRODUCTION

THEZGHETET

A journey of a thousand miles must
begin with a single step.
- Lao-tzu, The Way of Lao-tzu

Recent trends in the integrated circuit industry, such as decreasing feature sizes
and increasing clock speeds, make global synchronization across large chips difficult
to maintain. In fact, many modern chips have a number of communicating clock
domains, which eliminate many of the advantages of a synchronous design and
greatly increase design complexity. Furthermore, in most cases these designs are
created in an ad hoc fashion, with little tool support for synchronization issues,
and are difficult to verify. As a result, many designers have become interested in
asynchronous circuits because they eliminate the need for global synchronization.

Asynchronous circuits consist of groups of independent modules which communi-
cate using handshaking protocols. Since there is no global clock, clock distribution
and skew are not issues. Power dissipation is also reduced because gates only
switch when they are doing meaningful work, instead of at every clock edge. Also,
eliminating the global clock permits modules to work at their own pace and allows
average-case performance to be realized. There are a number of different styles
for designing asynchronous circuits. Most asynchronous design methodologies are
based on the assumption that nothing is known about the delays between signal
transitions. Therefore, the circuit must be constrained to work correctly even in
cases which never occur in a realistic implementation. The overhead necessary to

guarantee this behavior often makes the asynchronous average-case worse than the

synchronous worst-case.

Timed circuits are a class of asynchronous circuits which use explicit timing
information in circuit synthesis. Although precise timing relationships are often
unknown before synthesis and technology mapping, the designer usually knows
some reasonable estimates. Applying even rough estimates can lead to the removal
of large amounts of circuitry that would be required for a speed-independent design.
These timing assumptions can then be formally verified after synthesis when the
actual timing values are known. This design style can lead to significant gains in cir-
cuit performance over asynchronous circuits designed without timing assumptions
[29].

Timed circuit synthesis consists of two phases. The first stage involves the ex-
ploration of the timed state space to determine which untimed states are reachable
by the system. Because these state spaces grow exponentially with the number
of signals, it is important to find efficient methods to store the information com-
piled. One method of accomplishing this is to implicitly represent the data points
representing the state space.

The second stage consists of repeatedly dividing the state graph into subregions
to determine the necessary behaviors. For each signal, the graph is divided into
those regions where the signal should be enabled to rise, should be enabled to fall,
should remain high, or should remain low. Equations are derived to represent all
possible circuit implementations which conform to these behaviors.

We have adapted the ATACS tool to use implicit methods to improve memory
performance. Binary Decision Diagrams (BDDs) [8] are used throughout cir-
cuit synthesis. Where appropriate, Multi-terminal Binary Decision Diagrams [16]
(MTBDDs, also known as Algebraic Decision Diagrams or ADDs [34]) are used to
store integer valued data. BDDs are a highly effective way to store and manipulate
boolean functions. MTBDDs allow this methodology to be extended to integer
valued functions with boolean inputs. We have found the (MT)BDD representation

to be much smaller than an equivalent explicit representation.

1.1 Related work

Many systems exist for the synthesis of untimed asynchronous circuits [21].
One methodology is the use of fundamental mode designs [37], where signals are
constrained to change one at a time, and must give the system time to settle before
other signals may change. Another possibility is burst-mode circuits [17, 31, 40],
where this limitation is extended to allow a set (or burst) of inputs to arrive
concurrently, followed by a burst of outputs. Delay-insensitive circuits are a third
method, with the assumption that the delays of both wires and gates are unbounded
[7, 20, 27]. Speed-independent circuits are similar, but assume that wire delays are
negligible [2, 12, 26]. These synthesis methods use little or no timing information,
and therefore can lead to inefficient circuits because they need to correctly handle
cases which never occur in practice.

Many models have been proposed for the analysis of timed systems. These range
from continuous timers on individual events to large equivalence classes representing
groups of events. The timed circuit synthesis method used in ATACS [29] allows a
lower and an upper bound to be assigned to the causal relationships between signals.
Timing analysis is performed using geometric regions, which have been shown to
be an efficient method for representing information about timed state spaces [4].
Unfortunately, large state spaces are still generated when the method is applied to
large, complex designs, and memory size can be prohibitive.

BDDs have been shown to be an efficient way to represent design information and
large state spaces. In [11], BDD techniques are developed to decompose generalized
C-element circuits in a hazard free manner, the result being a parameterized descrip-
tion of all hazard free decompositions. In [6], implicit methods are applied to the
analysis of timed systems. BDDs are used to perform discrete time analysis, with
timing values represented as binary vectors. The system is unable to analyze large
models due to the complexity of the discrete time model used. The COSPAN tool
also uses implicit methods to perform state space analysis, but uses the unit-cube
algorithm [1]. This method also suffers from state space explosion when used on

relatively small designs.

1.2 Contributions

Figure 1.1 shows the design flow of the ATACS tool. The focus of this work has
been to apply implicit methods to timed state space exploration and the synthesis
of timed circuits within this tool framework.

MTBDDs have been used as an implicit data structure to store information
compiled during state space exploration. A standard explicit state space exploration
method is used, but the list of geometric regions encountered as well as the resulting
state graph are represented using MTBDDs. This mixed approach of implicit
structures and explicit algorithms results in a tradeoff. For large examples the
memory performance of the MTBDD representation can be two to three times
better than the explicit representation, but unfortunately also takes an order of

magnitude more time to manipulate. In those cases where the data set would not

~Z

TERS/TEL

State Space Explosion

PRS

Figure 1.1. ATACS design flow.

otherwise fit in the memory of the computer, it is a win.

In the synthesis stage the entire process has been reengineered to use implicit
algorithms. Runtimes for the synthesis stage using this method compare reasonably
well with heuristic single-cube approaches. It also results in a substantial improve-
ment compared with the best exact method. (Of course, this gain is dwarfed by
the amount of time spent in state space exploration.) The main advantage of this
approach is that it allows the derivation of solution spaces containing all valid
solutions to the synthesis problem.

There is another gain which is somewhat difficult to quantify: the use of implicit
methods provides a certain elegance to the coding process. The algorithms used in
this work can be expressed as mathematical operations on boolean functions, and
the use of a BDD package allows direct mapping to primitive operations on BDD
structures. Such code is easier to develop and decode, more aesthetically pleasing,

and simpler to verify.

1.3 Outline
Chapter 2 discusses issues relating to the exploration of timed state spaces.
Chapter 3 discusses methodologies for timed circuit synthesis. Finally, Chapter 4

gives some conclusions and some ideas for future work.

CHAPTER 2

STATE SPACE EXPLORATION

I could be bounded in a nutshell,
and count myself the king of infinite
space...

- Hamlet, Act 2, Scene 2

Timed circuit synthesis is dependent on a complete exploration of the timed state
space of the specification. This state space can be very large since it must include,
not only all of the combinations of signal values allowed by the specification, but
also the time relationships between signal firings. However, it can be smaller than
the complete state space of an equivalent specification without timing since states
that are not reachable given the timing information are not explored.

The size of the timing information depends on the timing algorithm being used.
In fact, in a naive algorithm where a continuous timer is associated with each signal
transition, the timed state space is infinite. A slightly better representation would
be to attach a clock to each signal transition that advances only in discrete time
steps [10]. This does make the state space finite, but it still explodes [36]. A BDD
method has been proposed in [6], to improve discrete time memory performance,
but it does not address the state explosion problem inherent in discrete time. The
geometric region method, where timing information is stored as a constraint matrix
representing relationships between signal transition times, has been shown to be
an efficient way to represent a timed state space [4, 30, 35, 36]. However, even
with a region based representation, the memory required to store such a state
space explicitly can be prohibitive for large designs. In many domains, implicit
methods have been shown to significantly reduce memory usage [9]. Since state

space exploration is such a memory intensive process, it is an excellent candidate

for such an approach.

2.1 Motivating example

The circuit shown in Figure 2.1 is a self-precharging dynamic OR gate (SPDOR)
and is used as an example throughout this chapter. Figure 2.1(a) shows a block
diagram of the circuit, and Figure 2.1(b) shows the waveforms which describe the
behavior of the circuit. Briefly, the circuit receives a pulse from either 7, or 5, and
reacts with a pulse on the output a. A rising transition on the output causes the
feedback signal x to fall, which causes the reset of signal a. The falling transition
on a then sets x high, and the gate is ready to process another pulse. The timing

annotated handshaking expansion for this circuit is shown in Figure 2.2.

2.2 Explicit timed state space exploration

The state space exploration procedure used by ATACS begins with a timed event-
rule (ER) structure, described formally in [4, 29]. Timed ER structures can repre-
sent a set of specifications equivalent to those represented by both time and timed
Petri nets, as well as others that are quite difficult to represent with a Petri net.
A timed ER structure consists of a set of rules that represent causality between
signal transitions, or events, as well as a set of conflicts which are used to model
disjunctive behavior. Rules are annotated with a bounded timing constraint which
must be satisfied in order to enable a transition to occur. Each rule is of the form

(e, f,l,u), where e is the enabling event, f is the enabled event, and (I, u) is the

i1J>j
d X M

(2) (b)

Figure 2.1. SPDOR (a)block diagram and (b)waveform.

module synor;

delay idelay
delay =xdelay
delay adelay

<500,550;269,299>;
<101,111;99,109>;
<201,221;199,229>;

input il = {false,idelay};
input i2 = {false,idelay};
output a = {false,adelay};
output x = {true,xdelay};
process a;

x[[i1+ -> a+; x—; a—; x+
| i2+ -> a+; x-; a-; x+
1]

endprocess

process ienv;

*[[skip -> il+; il-
| skip -> i2+; i2-

1]

endprocess

endmodule

Figure 2.2. CHP description of the SPDOR gate.

bounded timing constraint. The timing constraint places a lower and upper bound
on the timing of a rule. A rule is satisfied if the amount of time which has passed
since the enabling event has exceeded the lower bound of the rule. A rule is said
to be expired if the amount of time which has passed since the enabling event has
exceeded the upper bound of the rule. Ignoring conflict, an event cannot occur
until all rules enabling it are satisfied. An event must always occur before every
rule enabling it has expired. Since an event may be enabled by multiple rules, it is
possible that the differences in time between the enabled event and some enabling
events exceed the upper bound of their timing constraints, but not for all enabling
events.

A graphical representation of the timed ER structure for the SPDOR gate
is shown in Figure 2.3. Nodes represent signal transitions and arcs represent
causal relationships between them. Each arc should be annotated with a set of
timing bounds, but in this drawing most have been removed to keep things simple.
Tokens on arcs indicate that the preceding transition has occurred but the following
transition has not. Except where signals are in conflict, all incoming arcs must have
tokens to fire a transition. Where two signals conflict but both have causal arcs to
the same event, only one of the two tokens need be present to cause the transition.
In a similar fashion, when a signal transition causes two conflicting events, tokens
are placed on both arcs but the occurrence of one of the conflicting events removes
the token enabling the other.

The goal of state space exploration is to derive the state graph (SG), which is
necessary for circuit synthesis. A SG is a graph in which the vertices are untimed
states and the edges are possible state transitions. A transition between two states
exists if the specification allows the circuit to move from one state to the other with
one signal transition. A reduced state graph (RSG) is a SG where some branches
have been pruned because timing information has shown them to be unreachable.

A RSG is modeled by the tuple (7,0, ®,T") where I is the set of input signals, O
is the set of output signals, @ is the set of states, and I' C & x @ is the set of edges.
For each state s, there is a corresponding labeling function s : TUO — {0, R, 1, F'}

10

i1+ i2+

[201,221] \

(a2) (2)

[99,109]

X-12
Conflicts:
(ar2 | 1+ i
a+l/ #at+/2

Figure 2.3. Self-precharging dynamic OR gate: timed ER structure.

which returns the value of each signal and whether it is enabled, i.e.,

0 if = is stable low in s
R if z is enabled to rise in s
1 if x is stable high in s
F' if z is enabled to fall in s

s(z) =

It is useful to also define a function wval which strips the excitation information, i.e.,

val(s(x)) = { 0 ifs(z)=0ors(z)=R

1 ifs(z)=1ors(z)=F

Finally, the predicate enabled returns true if the signal is enabled, i.e.,
en(z) = (=R V z=F).

Traditional definitions of state labeling functions have not included the enabling
of signals as it can usually be inferred from the set of state transitions. In timed
circuits, however, it is possible that a signal is enabled, but another signal always
fires first. In this case, there would be no state transition out of that state in which

that signal fired, and thus, it would not be possible to infer from the state graph

11

that the signal is enabled. This information is necessary to properly synthesize
timed circuits for the output signals. The notation 1* (or 0*) has also been used
to indicate that a signal is enabled to change.
A state graph is defined to be well-formed if for any state transition (s, s') in T,
the value of exactly one (denoted by 3!) enabled signal in s changes to a new value
,

in s'. , i.e.,

(s,¢) el = Flw € TUO.val(s(x)) # val(s'(x))

The signal x that differs in value in the state transition (s, ') is denoted as follows:
s 5 s'. Our synthesis procedure also requires that the state graph be complete
state coded, defined to be that for any two states in which all signals have the same
value, any output signal enabled in one state is also enabled in the other [12].
Figure 2.4 shows the RSG describing the behavior of the SPDOR circuit. In the
initial state (RR10) both il and 2 are enabled to rise, while a is stable low and x
is stable high. This state may be exited either on the transition ¢1 1 or 2 1. Note
that the transitions ¢1 1 and 2 1 are in conflict, as indicated in Figure 2.3; one or
the other may occur, but not both. The occurrence of i1 1 therefore disables 2 1,

and we enter state (FO1R), not (FRIR). In this state, either @ may rise or i1 may

X+

<il,i2x,a>

Figure 2.4. RSG for the self-precharging dynamic OR gate.

12

fall, while 72 is stable low, and z is stable high. Notice that there is no edge for the
transition 71 . As shown in Figure 2.3, the maximum delay for a rising is 221 time
units, while the minimum delay for i1 falling is 269 time units. This determines
that a 1 always occurs first, so (001R) is eliminated as a reachable state. Firing
this transition causes the system to enter state (FOF1). This state is represented
by the enabling tokens shown in Figure 2.3. Again, although sufficient tokens are
present to fire both the event il- and the event x-/1, the timing indicates that the
maximum time from il+ to il- is 299 time units, while x- occurs no less than 300
time units after il-. Therefore, i1- always occurs first and the system enters state
(RRF1).

While the state space of this system is relatively easy to find, the time constraints
on most systems are more difficult to analyze. It is important to have an efficient
algorithm to perform this analysis. The method used is to perform a depth first
search to find all reachable timed states. A timed state for an ER structure consists
of a set of rules whose enabling events have fired, R,,, the state of all the signals,
se, and a set of timing information, T'/. The vector s. defines an untimed state
and contains a variable for each signal in the system. These variables may take on
any one of the following values: 0 denotes a stable low signal, R denotes a signal
enabled to rise, 1 denotes a stable high signal, and F' denotes a signal enabled to
fall. The timing information, 71, is represented with geometric regions, which were
first introduced in [5, 19, 24].

When the geometric region approach is used for timing analysis, a constraint
matrix M specifies the maximum difference in time between the enabling times of
all the currently enabled rules. The 0th row and column of the matrix contain the
separations between the enabling times of each enabled rule and a dummy rule ry.
The enabling time of 7y is defined to be uniquely 0. Each entry m;; in the matrix
M has the value maz(t(enabling(j)) — t(enabling(i))), which is the maximum time
difference between the enabling time of rule j and the enabling time of rule ¢. Since
the enabling time of ry is always zero, the maximum time difference between the

enabling of rule i and the enabling of rule 4 (my;) is just the maximum time since

13

1 was enabled. The maximum time difference between the enabling time of ry and
the enabling time of rule i (m;g) is the negation of the minimum time since i was
enabled. Note that M only needs to contain information on the timing of the rules
that are currently enabled, not on the whole set of rules. This constraint matrix
represents a convex n-dimensional region, where n is the number of enabled rules.
Each dimension corresponds to a rule, and the firing times of the enabled events
for the rules can be anywhere within the space. Figure 2.5(a) shows a sample
geometric region, and Figure 2.5(b) shows the corresponding constraint matrix.
Again, the region is a convex polygon defining the relationships between the timers
associated with the active rules at a given point in the state space exploration, and
the matrix is a concise numerical description of the region. In this case, the region
indicates that the timer ¢, associated with rule 7, can have a value anywhere
from two to twenty time units, but no more than five time units greater than .
(to —t1 < =2,t; —tg < 20, and t; — ty < 5.) Similarly, timer ¢,, associated with
rule 7o can have a value between zero and fifteen, but must be no more than two
time units less than ¢;. (ty — ty < 0,19 — tg < 15, and ty — t; < —2.) The polygon
shown in Figure 2.5(a) contains all points (fy,#;) which conform to these timing
constraints.

In order to track progress through the timed state space, it is necessary to record
the geometric regions encountered for each state so that previously explored paths
are not repeated. The explicit method maintains the timed state list and the state
graph in a joint structure, a hash table where each entry is an augmented timed
state (a timed state with transition links). Each entry in the state table contains
the s. vector and the R, set for that state with a linked list of associated geometric
regions. Pointers are stored with each state to indicate its predecessor and successor

states.

2.3 Implicit timed state space exploration
The explicit enumeration method described above requires too much memory

to effectively represent complex designs. Therefore, it is necessary to explore

14

Geometric Region Constraint Matrix
20
teotumn ™ frow <= M;
h 4 b
t
1 th[o 20 15
5 L2 o -2
2. t, \0 5 0

> 15
(a) (b)

Figure 2.5. A sample (a)Geometric region and (b) the corresponding constraint
matrix.
alternative methods of storing this information. Since much of the data compiled
during state space exploration consists of simple bit vectors, we have chosen to
use BDDs, which have been shown to be a highly efficient method for storing
and manipulating Boolean functions [8]. Because geometric region information is
integer-valued, MTBDDs have been chosen to store the region matrices. MTBDDs
are a type of BDDs which allow terminal nodes to contain numerical data, rather
than just the constants TRUE and FALSE. Geometric region matrices only have
entries for currently enabled rules. However, to make the representation more
manageable, the matrices have been expanded to a canonical form, where rows
and columns representing rules that are not enabled have been filled with a “not
an entry” symbol, the constant FALSE. MTBDDs collapse paths with common
structural features to the fewest nodes possible. In addition, because of the nature
of BDD implementations, it is possible for separate geometric regions with similar
structures to have common subregions stored in the same memory location.

The first step in building the representation is to use BDDs to store the bit
vector that indicates which rules are in R,,. To accomplish this, an atomic BDD

is allocated to represent each rule. These BDDs are assembled into the array

15

m = (my,...m,), where n is the number of rules in the timed ER structure. An
atomic BDD is one which represents a single variable. As shown in Algorithm 2.3.1
(see Figure 2.6), a new BDD, f, is created with the value TRUE. Each member
of the rule set R is then considered. If that rule is a member of the R, set, the
corresponding m; BDD is added to 3, otherwise the complement of the appropriate
m; BDD is added. The resulting BDD uniquely represents the R,, set. In an ER
structure with four rules, where R = {ry,ro, 73,74}, m = (mq, ma, ms, my), and
R, = {r1,r3}, (meaning that rules 1 and 3 are enabled, but rules 2 and 4 are not),
the implicit representation of the set of enabled rules would be composed of the
product my A Ty A m3 ATy and is shown in Figure 2.7(a). (Note that BDDs as
shown in this thesis are drawn to be relatively readable, and do not necessarily
indicate the actual node ordering or machine representation of these structures.)
It is also necessary to store the list of regions associated with each R,, set. To
represent this list structure, a numerical index ¢ is used to indicate that a given
matrix is the " matrix associated with a given R,, set. Any number i can be
viewed as a bit vector i = (10, ..., in), where i is the low order bit of the binary
representation of 7, and 7, is the high order bit. A set of BDD variables is used
to represent the binary value of 7, and a number BDD is constructed in a manner
analogous to that used for the R,, set. For instance, the BDD shown in Figure 2.7(b)

represents the number “2” in a four-bit notation. Numbers of this form are used to

Algorithm 2.3.1 (Extract R,, BDD)
bdd FindR,,BDD(rule set R, rule set R,,, bdd array m) {
bdd f = TRUE
foreach (r; € R)
if (r; € R,,) then

= Amli]
else
B = A-mli]
return [

}

Figure 2.6. Function to extract a BDD for the rule set R,,.

16

(TRuE) (FALSE)

(@ (b)

Figure 2.7. MTBDD representation of (a) R,, and (b) the number “2”.

create a dynamically sized array of matrices. In order to conserve space, precisely
enough bits are used to represent the largest number currently needed.

There are many ways to represent regions, and on the surface using MTBDDs
would seem to be a very inefficient method. Methods for representing sparse
matrices have been developed for scientific computing that are much more efficient
at representing single matrices. There are two major benefits to this approach.
First, it allows matrices to be manipulated within the BDD paradigm, which among
other advantages allows two matrices to be compared for equality in constant time
regardless of size. The greatest advantage, however, is the capacity to amortize the
costs of storage across many matrices. Many of the matrices encountered in practice
differ very little from one another. The BDD storage system used in ATACS allows
additional matrices to be added to the database and only consume the resources
necessary to represent the new elements. This often leads to the use of only a
few BDD nodes per matrix. Similarly the representation of numbers with BDD
bit vectors is extremely inefficient for small numbers of integers, but the costs are
spread if many are used, and the use of this format is necessary to enable this
matrix representation.

A matrix with integer entries can be viewed as a function (N x N — Z), which

takes row and column indices and returns the appropriate matrix entry(M(r,c) =

17

M,.). A square matrix can also be viewed as a function from boolean values to
integers, {0,1}" x {0,1}" +— Z. The row and column indices of the geometric
region matrices are thus parameterized. Each is represented as a boolean vector ¥ =
(1o, 71,72, -y) OF € = (Co, €1, Cay -..C), SO the function can be viewed as M (7, ¢) =
M,.. MTBDDs are an ideal way to represent this type of function [15]. BDDs are
constructed for each necessary row and column index, and stored in arrays r and
c. The BDD for the i"* column index is stored in c[i] and the BDD for the i*"row
index is stored in r[i]. For example, r[3] represents the value “3” using a set of
variables which indicate that it is a row index. Each augmented matrix is then
transformed into a MTBDD. Figure 2.8 shows the algorithm used to accomplish
the transformation. First, § is initialized to FALSE. Then each matrix location
is considered in turn. If that location is not tagged as “not an entry”, the BDD
« is set to represent the appropriate indices and a terminal node is created with
the proper value. The entry is then inserted into the matrix BDD using the ITE
operator. This operator takes three parameters: the first must be a normal BDD,
and the others may be either MTBDDs or normal BDDs. The effect of the call
ITE(a,,) is to take all paths in @ which lead to TRUE and link them to =,
and all paths in a that lead to FALSE and link them to . (This is equivalent to
the operation (a A y) V (ma A) if all parameters are normal BDDs.) Since any
path not leading to a valid terminal ends in FALSE, there is no need to explicitly
link “not an entry” locations. Figure 2.9 shows the MTBDD representation of the

following matrix:

0 20 15 =z
-2 0 =z -2 =x
r xr X T X
0O 5 = 0 =x
r xr X T X

Since rows 2 and 4 and columns 2 and 4 are filled with “not an entry” (and since
there is no row or column 5, 6, or 7), the BDD representation truncates those
paths with FALSE as soon as possible. Matrices represented in this form can be
compared for equality by checking to see if they are the same MTBDD, which is a

simple pointer check.

Algorithm 2.3.2 (Construct Matrix MTBDD)
mtbdd MakeMatrizxBDD (int n, matriz M, bdd vector r, bdd vector c) {
mibdd 3 — FALSE
forall (i:0<i<mn)
forall (j:0<j<n)

{
if M[i, j| # “not_an_entry” then
{
bdd o = r[i] A c[j]
mtbdd v = terminal (M[i, j])
B =ITE(a, ", B)
}
¥
return [

}

Figure 2.8. Function to create a MTBDD for the matrix M.

o @D,
Q{

1 l
AN WA .
POED B O O ED® B O @D ®

Figure 2.9. MTBDD representation of a geometric region matrix.

18

19

Figure 2.10. MTBDD representation of a timed state.

20

A timed state is represented by a composition of BDDs, one for the R,, set,
another for the list index, and a third representing the geometric region matrix.
Figure 2.10 shows the complete MTBDD for the timed state where R, = {ry, r3},
the link value is 2, and the region is the one shown in the above matrix. When a

new timed state is found, the timed state list MTBDD Ty is extended by the call
Ts = ITE(FindR,BDD(R, R,,,m) A i, MakeMatrixBDD(n, M,r,c),Ts),

where ¢ is the list index BDD for this region. Since list indices are kept as small as
possible, a size check is made before adding this region to the array. If necessary,
an extra bit (leading zero) is added to existing entries to accommodate the new
growth. As shown in Figure 2.11, the index numbers are dynamically grown as
the list lengthens. Index bits which do not appear in the figure are don’t cares,
so matrix “zero” as shown in Figure 2.11(a) also appears as every even numbered
matrix. Since the list is always traversed in order, the array is FALSE terminated
(much like a C string) so that the end of the array can be detected by the algorithm.
When inserting matrix “one”, the existing structure is first restricted to require a
two bit “zero” and then matrix one is ORed in, resulting in the structure shown in
Figure 2.11(b). Note that adding a third matrix (as shown in Figure 2.11(c)) does
not require the use of an additional bit, but adding a fourth matrix would result in

a five element list, (including the terminator), requiring three bits.

2.4 Implicit RSG representation
To construct an implicit representation of the RSG, each state is inserted as it

is encountered in the exploration.

2.4.1 Reachable state space
To represent the reachable state space, a predicate S on the vector x is defined
which returns true for all states reachable in any number of transitions from the
initial state. The vector x is (z1, %y, ...z,), where each variable z; isin T U O. S is
represented using a BDD which is constructed by defining a variable for each signal,

and then sweeping through the states defined in the RSG. In each state, we AND

21

the extracted values of the signals together to define the state (see Algorithm 2.4.1
in Figure 2.12), then OR the individual states together to create S:

S = SV FindStateBDD(s;, X).

Figure 2.13 shows the BDD for the state space predicate for the SPDOR example.
The BDD S shows that the reachable states are those in which (1) both il and i2

are low, or (2) exactly one of il and i2 are high and x is also high.

2.4.2 NextState function
The NextState function N is a predicate on S x S which returns true for all the
state pairs (s, s’) for which s’ may be reached from s in exactly one signal transition.
N is constructed in a manner analogous to S. A product term is created for each

valid pair of states (s, s'), and these are ORed together to form N:
N = NV (FindStateBDD(s,x) A FindStateBDD(s',x'))

A complication arises from the use of timing in generating the RSGs. As
mentioned before, when timing considerations show a state to be unreachable,
it may be removed from the RSG. If we based our implementation only on the
reduced state graph, the enablings to reach these states would be lost, and the
resulting circuit would be suboptimal. In the SPDOR example, a naive derivation
of S and N actually represents the state graph found in Figure 2.14(a). This graph
correctly describes the signal changes, but not the enablings. A correct graph is
shown in Figure 2.14(b). To illustrate the difference, the circuits synthesized from
these graphs are shown in Figure 2.15. The naive derivation results in the circuit
found in Figure 2.15(a). This circuit may work, but is larger and slower than the
circuit shown in Figure 2.15(b), derived from the correct RSG. This problem is
solved in the explicit system by using a four valued logic system (0,R,1, and F as
described above) stored as characters. However, in the implicit method the use of
bit vectors makes this less attractive, as it would double the necessary length of the

vectors.

22

(io)
0 ! (io) FAL

0 1

o

‘M .

| marixo | (FaLSE)

| Marixo | | Marix1 | | Marixo | | marix1 | | marix2 | (FALsE)

(@ (b) (©)

Figure 2.11. A false-terminated array holding (a)one, (b)two, or (c¢)three matrices.

Algorithm 2.4.1 (Find State BDD)
bdd FindStateBDD (state s, signal vector x) {
8=TRUE
Foreach z; in x
if (val(s(z;))) then
B = B A bdd(z,)

else
B = 4 A ~bdd(z;)
Return

}

Figure 2.12. Function to extract a BDD for the state s.

/ 1
0 x / 1

1 0

Figure 2.13. Self-precharging dynamic OR gate: BDD for S.

(@)

(b)

Figure 2.14. SPDOR graphs:(a)incorrect enablings, (b)correct enablings.

(b)

23

Figure 2.15. SPDOR circuits: (a)using incorrect enablings, (b)using correct

enablings.

24

R |,

at

(ab) (ab)
(&) (b)

Figure 2.16. Simple diamond: (a)speed independent, (b)timed with incorrect
enablings, (c¢)timed with correct enablings, and a transition to a “ghost state”.

X+

X+ \5’5]
[10,10/ QS] b+
at b+ AO,lO]

at

(@) (b)

Figure 2.17. Simple diamond:(a)original TERS fragment and (b)incorrect TERS
fragment.

The basic problem can be illustrated using the familiar diamond shown in
Figure 2.16. The original speed-independent graph is shown in Figure 2.16(a).
Because timing analysis says that the signal b always rises before a, the state (1R)
is removed from the graph. If the correct enablings are not maintained, the less
concurrent graph shown in Figure 2.16(b) is produced. The enabling of a is now
delayed by the time necessary to fire b, and each cycle of the circuit is slowed by
that amount. Suppose that the original graph fragment shown in Figure 2.16(a)
represents the behavior shown by the TERS fragment in Figure 2.17(a): some
signal « enables both @ and b, with a to follow in 10 time units and b to follow in

5. The total time necessary to traverse this graph from state (RR) to state (11)

25

should be 10 time units. An improperly pruned graph (Figure 2.16(b)) loses the
fact that x was the enabling event, and actually represents the TERS fragment
in Figure 2.17(b). In this case the total traversal time has increased from 10 to
15 time units. This less concurrent circuit may not only be slower, but it may
also be incorrect if it violates the original timing assumptions. Some other state
may have been pruned as unreachable based on the timing of this segment. Such
unreachable states are used as “don’t cares” during the synthesis process. If such a
state were used in minimizing a gate, and this new timing made it reachable again,
there would be a hazard introduced in the system.

To maintain the correct enablings, the N relation is populated with a transition
for every enabled signal, even if the target state is not reachable. Such a “ghost
transition” can be detected by the fact that the target state is not contained in the
S relation. This ghost state consists of the same values as the original state, except
that the enabled signal has changed phase (see Algorithm 2.4.4 in Figure 2.20).

Figure 2.16(c) shows an example of a “haunted” graph: the state (1R) has been
reinserted as a “ghost state” with a transition from (RR). This path is never taken,
but it is essential that it be represented. In the SPDOR example, several ghost

states are necessary, such as (001R) which has a transition from (FO1R).

2.4.3 Existing Graphs

The original version of this system extracted implicit representations from ex-
isting explicit state graphs. These algorithms have been maintained to allow the
system to import graphs from other systems for synthesis. The S relation is con-
structed using Algorithm 2.18. The N relation is constructed using Algorithm 2.19.
To maintain the correct enablings, a transition to a “ghost state” is added to the
RSG whenever an enabling is found without a matching next state, as shown in
Algorithm 2.4.4 (see Figure 2.20). Note: we use the notation s |,,—; to define the
state where all values are the same as in s, except that the signal z; has the value

1.

26

Algorithm 2.4.2 (Find Reachable State Space)
/* Given the graph G, with set of states s; € ®, find BDD S.*/
bdd FindStateGraphBDD(RSG G) {
S = FALSE
Foreach s; in ®
S =SV FindStateBDD(s;,x);
return (S)

}

Figure 2.18. Algorithm to find reachable state space S.

Algorithm 2.4.3 (Find NextState Relation)
/*Given the graph G, with set of state pairs (s,s') € I', find BDD N.*/
bdd NextState(RSG G) {
N = FALSE
Foreach (s,s') in T
N = NV (FindStateBDD(s,x) A FindStateBDD(s',x'));
return (N)

}

Figure 2.19. Algorithm to find NextState relation V.

Algorithm 2.4.4 (Add Ghost State Transitions)
/*Given the graph G, with set of state pairs (s,s') € ', add missing transitions.*/
RSG Haunt(RSG G) {
Foreach s; in ®
Foreach z; in x
i ((54(55) = B) A (5,51 Leyrore) €)
r=ru {(Sia i ‘fﬁjzl)};
else if ((si(z;) = F) A ((si, Si |a;=00rr) ¢ 1))
r=ru {(Si’ i ‘IJ:U)};
return (G)

}

Figure 2.20. Algorithm to add transitions to ghost states.

27

2.5 Results

We have implemented the implicit timed state space exploration procedure
and tested it on a number of examples. Since most timed circuit examples are
quite small due to previous memory limitations of synthesis tools, we have also
parameterized two asynchronous FIFO examples in order to demonstrate the effec-
tiveness of implicit methods. One, described below, is a simple lazy-active passive
buffer (lapb). The other is a parameterized version of the high-performance FIFO
element described in [28](referred to as fifo). The lazy-active-passive buffer FIFO is
constructed of a chain of lazy-active-passive buffers which behave as FIFO elements.
The buffer continually reads data from its left port and sends data to its right port,
implementing the CHP *[LI; R!], illustrated graphically in Figure 2.21. Figure 2.22
shows a timed ER structure that specifies a lapb implemented with a four-phase
communication protocol. The signal Iz is the buffer’s input on the left channel,
lo is the output on the left channel, r¢ is the input on the right channel, and
ro is the output on the right channel. A state variable a is also included in the
specification to allow it to have complete state coding (CSC) [12]. A number of
timing assumptions are made in the specification to optimize the circuit and are
shown as ranges attached to each rule. Rules that enable transitions on [i are
given a delay range [l;, uy], which indicates that this range is set depending on
what the lapb element is communicating with. If it is communicating with another
similar lapb circuit, this range is [1, 5] like the rest of the ranges. If the circuit is
communicating with a dissimilar circuit, these ranges are set to [100, o], since the
behavior of the environment is assumed to be slow. The [lg, ug| delay ranges used
on rules enabling transitions in ri are assigned in a similar way. Both this FIFO
and the one described in [28], are very concurrent when parameterized and generate
an extremely large number of geometric regions which correspond to the number
of regions necessary to synthesize a large complex design.

Table 2.1 shows the results of applying both explicit and implicit state space
representation techniques to the various examples. The partial order method for

state exploration discussed in [4] is used to generate the timed state space. The

L-env LAPB LAPB R-env
ro i ro------- =i ro ———=li
ri lo i |<—------- lo 1 ~——|lo

Figure 2.21. A FIFO composed of lapb elements.

(19]

Figure 2.22. Timed ER structure for a lazy-active, passive buffer.

28

29

examples shown were run on an Sparc20 with 128 Mb of physical memory. The
table is divided into two sections: the top section contains information about
various timed circuit benchmarks, and the bottom section contains data on the
parameterized examples lapb and fifo. The first column in the table shows the
number of regions that are found for each specification. From this column, it is clear
that adding each new stage to the fifo or lapb examples causes the number of regions
to increase exponentially. The Max Memory columns depict the maximum amount
of memory in megabytes that is used during state space exploration. This number
is the factor that limits the size of specifications that can be synthesized. The table
shows that for small examples, such as the one and two element lapbs and fifos, as
well as examples in the first part of the table, implicit methods do not improve and

sometimes even worsen this performance measure. However, for small examples,

Table 2.1. Experimental results. Memory values are given in Mb.

Implicit Rep. Explicit Rep.

Mem Max CPU | Mem Max CPU
Examples || Regions (Mb) Time (Mb) Time
spdor 21 .89 24 .82 .026
spdand 91 1.04 1.07 .82 .16
cnt 171 2.0 6.32 1.6 57
mmuoptSV 955 1.8 38.8 1.7 6.6
mmuopt 149 1.3 3.47 .95 45
slatch 68 1.2 1.14 9 13
elatch 115 1.3 2.28 9 .24
SELopt 1116 2.5 62.8 2.7 7.1
tshm 1784 3.0 74.0 2.9 11.3
scsiSVT 20 .84 .20 7 .016
lapb 56 .96 .45 .79 .089
laph2 615 1.7 11 1.3 1.5
lapb3 8226 5.5 500 8.0 61
Tapb4 127,618 40.1 | 4.3 x10° 143 [6.6x10°
fifo 81 1.2 1.65 .90 .163
fifo2 828 2.5 36 1.9 4.3
fifo3 12371 12 1683 17 175

30

memory size is not an issue since modern machines regularly contain at least 32Mb
of memory. In the larger examples, lapb3, lapbj, and fifo3, the benefits of implicit
methods become clear. On lapb3 and fifo3, the implicit representation only requires
about two thirds of the memory required by the explicit representation. On lapbj
the explicit representation requires less than a third of the memory required by the
explicit representation. The columns labeled CPU time show the amount of time
spent in state space exploration for each method. The implicit method normally
takes approximately 10 times as long as the explicit method. On large examples,
however, the implicit method takes much less space and is able to complete examples
which the explicit algorithm cannot do.

Figure 2.23 shows the memory usage pattern of the state space exploration of
lapb4 and lapbd for both the explicit and implicit methods. The x-axis shows the
number of regions explored and the y-axis shows the maximum memory used to that
point in the state space exploration. The solid lines represent the implicit method
and the dashed lines represent the explicit method. The graphs show that the
implicit method not only yields a significant overall improvement in memory usage,
but also that the memory usage trends for implicit methods are much better. As
the number of regions grows very large, the amount of memory used by the implicit
methods approaches an asymptotic value. This occurs since once the BDDs get
mostly full, adding additional regions does not add significant memory due to the
node sharing behavior of BDDs. When the BDDs get large and a new region is
added, most of the nodes needed for this state are already in the current BDD, and
very little new memory is necessary. With explicit methods, on the other hand,
each new region throughout the state space exploration requires a new allocation
of memory, causing the memory usage of the explicit method to grow linearly with
the number of regions. (Figure 2.23(b) does not represent a complete exploration
of lapb5. Both methods were allowed to progress until they had exhausted the
physical memory available on a Pentium II workstation with 384MB of physical
memory.)

Figures 2.24(a) and 2.24(b) show the number of BDD nodes per region that

Maximum Memory Usage for lapb4

150 T T
.
-
'
d
- e
-
e
e
-
e
-
7
7
100 e b
E‘ 7
g s
Ve
[
= e
5 s
0 d
Q e
% Ve
7
<
g o
2 7
50 B
- - Explicit
e Implicit
0 | | | | | |
0 2 4 6 8 10 12 14
Regions x 10"
(a)
Maximum Memory Usage for lapb5
400 T T T T

350

Megabytes of Memory
N N
o ul
o o

[y
a1
o

100

50
! - - Explicit
/| _— Implicit
0 | | | | | | | |
0 2 4 6 8 10 12 14 16 18
Regions % 10°

(b)

Figure 2.23. Max memory usage for (a)lapb4 and (b)lapbs.

31

32

are required to do timed state space exploration for the lapb FIFOs of various
sizes. Figure 2.24(a) shows the BDD nodes that are used in representing the timed
state space, and Figure 2.24(b) shows the total BDD nodes necessary, including
S, N, and overhead required to manage the BDDs. The trend on these results
is also very good. As the size of the example increases, the number of nodes per
region decreases dramatically, indicating that BDDs should be able to be used
for even bigger examples. Unfortunately, the technique is currently limited in our
implementation by the memory used in the stack. As examples get very large, a
greater percentage of memory is being used storing stack elements. Most of the
information on the stack can be represented using BDDs, and in the future we plan
to extend this work to include that optimization. When the stack is implemented

with BDDs we expect to be able to do even larger examples.

State Space MTBDD Nodes per Region for Various lapb Sizes

20 T T T T T

18 ~

16} Q

141 \

MTBDD Nodes per Region

4 I I I I I I
1 15 2 2.5 3 3.5 4

Number of Timed Lazy—Active Passive Buffers

(a)

Total MTBDD Nodes per Region for Various lapb Sizes

350 T T T T T

300

N N

o a1

o o
T T
—

Total MTBDD Nodes per Region
&
=)
T

100 \

1 15 2 25 3 35 4
Number of Timed Lazy—Active Passive Buffers

(b)

Figure 2.24. BDD node usage (a) for state space and (b) overall.

33

CHAPTER 3

SYNTHESIS

"Contrariwise,” continued Twee-
dledee, ”If it was so, it might be;
and if it were so, it would be; but as
it wsn’t, it ain’t. That’s logic.”
-Lewis Carroll,

Through the Looking Glass

The synthesis stage starts with a reduced state graph (RSG), as described in
the preceding chapter. State graphs are a common intermediate form for most
asynchronous CAD tools [13, 14, 23, 26, 32, 33, 38, 39|, and can be derived from
many higher-level languages such as CHP and STGs [29], as well as more recently
VHDL [41]. Because of this commonality, support has been included in the tool
to import SGs derived from other CAD tools. ATACS implicitly stores RSGs using
two BDD structures: S, which represents the reachable state space, and N, which

describes the next state relation.

3.1 Excitation regions and quiescent states

In order to obtain an implementation, the state space is first decomposed for
each output signal into a collection of excitation regions. An excitation region for
the output signal x is a maximally connected set of states in which the signal is
enabled to change to a given value (i.e., s(z) = R or s(z) = F). If the signal is
rising in the region (i.e., s(z) = R), it is called a set region, otherwise the region
is called a reset region. The excitation regions for each signal transition is indexed
with the variable k£ and the k" excitation region for a signal transition zx is denoted
ER(xx, k), where “*”indicates “1” for set regions and “|” for reset regions. We also

define a set of excited states, which is the union of the excitation regions for a given

35

signal transition, i.e.,

ES(zx) = J ER(zx, k).

For each signal transition, there is an associated set of stable, or quiescent, states
QS(z*). For a rising transition x 71, it is the states where the signal is stable high
(ie,, QS(x 1) = {s € ® | s(x) = 1}), and for a falling transition, it is the states
where the signal is stable low, i.e., QS(z |) = {s € ® | s(z) = 0}).

Given the BDD N, the BDD representations of ES and QS are straightforward
to find. For instance, the set of excited states for # 1 would be found by applying

the following formula:
ES(x 1) = existy(x',mx Ax' AN)
And the quiescent states can be found in a similar manner:
QS(x 1) = existy,(x',x ANz' AN N)

The function exist,(x, f) is defined to be the existential quantifier of the variable
x in the function f. This is equivalent to f,V f-,, and is used to return the portion of
the predicate which can return TRUFE for any value of x. This function is extended
to iteratively operate on a vector of variables x, and results in a new function f’
which does not depend on the variables in x.

The excitation regions would then be found by dividing each excited set into
connected regions. To do this, the algorithm merely picks a seed state at random
and iteratively adds all excited states reachable in one step from the region (see
Algorithm 3.1.1 in Figure 3.1). This algorithm uses the function TRANS(x — vy, f)
which is defined to transform the function f on the variables x; to a function on
the variables y;.

In our SPDOR example, let us consider the excitation region for x |. In the naive
graph shown in Figure 3.2(a), this region is just {(00F1)}. In the “haunted” version
shown in Figure 3.2(b), it is extended to {(RRF1), (OFF1), (FOF1)}. The quiescent
set for the same transition is {(RROF)} ({(000F)} in the naive derivation).

Algorithm 3.1.1 (Find Excitation Regions)
set_of-bdds FindER(bdd N,bdd ES) {

Do {
Pick s € ES (at random)
p=s;
Do {
ERy = p;

p=ERV exist,(x', ES(x) N ER,(x') N N(x,x')) V
TRANS(x' — x, exist,(x, ER,(x) N ES(x') A N(x,x')));
} While(ER; # p);
Add ERy, to bdd set ER;
ES = ES A ~ERy;
} While (ES)
return (ER)
}

Figure 3.1. Algorithm to find excitation regions.

(b)

Figure 3.2. SPDOR graphs:(a)incorrect enablings, (b)correct enablings.

36

37

3.2 Timed circuit implementation

The circuit is implemented by creating a function block for each output signal,
consisting of a C-element with a sum-of-products (SOP) stack each for the set and
reset (see Figure 3.3). Each product block in the SOPs for each function implements
a cover for a single excitation region. Note that while depicted as a simple AND
gate, in order to guarantee hazard-freedom, this “product” block may need to be
a more general function block. The circuit may be implemented using a standard
C-element (SC) structure using discrete gates, as shown in Figure 3.3(a). It may
also be created using a complex gate known as a generalized C-element (gC) [25].
Figure 3.3(b) shows a transistor-level gC design using a weak feedback staticizer,

and Figure 3.3(c¢) shows a fully static design.

3.2.1 Single cube covers
In [11], a parametrized family of decompositions of high-fanin gates is investi-
gated at one time by adding additional variables. We extend this idea to synthesis
by representing our covers by a series of implications of the form (x; = ;) A (xnti =

—z;). These implications will be ANDed together to produce a BDD which repre-

ﬂ)i
01—
s10—
s11—
“1r00—]
~1rol—

~1r10—)
“1r11—

@ (b) (©)

Figure 3.3. Circuit types:(a) a standard C-element design, (b) a generalized
C-element design with weak-feedback, and (c) a fully-static gC design.

38

sents every possible potential single cube cover of the corresponding ER.
Co(r, k) = /\ U;0, where W, = [(xi0 = %) A (Xntio = 775)]
i

We then apply restriction operators to this BDD, to remove covered states which
violate our requirements for a valid cover. Any satisfying assignment of the remain-
ing BDD is a valid implementation: if a y variable appears in the positive phase,
the implied variable must appear in the cover; if it appears in the negative phase,
the variable cannot be included; and if it does not appear at all, it may or may not

be used, at the designers discretion.

3.2.2 Multicube covers

Occasionally an excitation region is found which cannot be covered by a single
cube. An example is the RSG fragment shown in Figure 3.4. This is commonly
known as a nondistributive region, since the excitation region has multiple minimal
entry points. The ER for ¢ 1 is the set {(1RR),(R1R),(11R)}. The state (RRO),
however, cannot be included, because c is stable low. Therefore, no single cube will
describe the entire region. A possible solution is to add state variables to change
the state coding [22]. Our approach is to create a SOP block to represent this
region, instead of a simple “AND” gate design. To accomplish this, the algorithm
tests each cover BDD to see if it is identically FALSE. If this occurs, a second (or
third, etc.) initial cover is created, and ORed together with the preceding initial
cover (i.e., C = CyV Cy V..Cy,). The resulting BDD is passed through the same

filters, producing a multicube implementation of the ER.

3.3 Correct cover formulation
In order to create a valid timed circuit implementation, it is necessary to define
the states a cover must include, may include, and may not include. Each cube of the
implementation must include the entire corresponding excitation region. In order
to minimize the logic, it may also include any unreachable state, and may include
some additional reachable states. Inclusion of some reachable states, however, can

cause incorrect behavior. These disallowed states vary, depending on the type of

39

Figure 3.4. Fragment of an RSG for a standard OR gate.

circuit chosen. In a gC implementation, any state where the signal is enabled in
the same direction or stable at the final value may be included. In a SC circuit,
some of those states may need to be excluded to guarantee hazard-freedom. The
correctness constraints discussed here were developed in [3] for speed-independent

circuits and extended to timed circuits in [30].

3.3.1 gC cover violations
In a gC implementation, the allowed growth regions include the remainder of the
excitation space and the entire quiescent space for the corresponding signal transi-

tion. In other words, correct covers must satisfy the following covering constraint:
FRCCN®CESUQRS
The boolean equation for this restriction is the following:
V=SAN-ESAN-QS

That is to say, the cover may not include any reachable state not in the quies-
cent or excited spaces. This prevents the gate from being pulled up and down

simultaneously.

3.3.2 SC cover violations
In a SC implementation, additional internal signals are introduced by the use

of discrete gates. In order to prevent the introduction of hazards, additional

40

restrictions are placed on the states allowed in the cover. The purpose is to ensure
that each cover makes a single monotonic transition when it is actively changing
the output and makes no other transitions at any other time. To guarantee this, we
need a modified covering constraint and an entrance constraint. This ensures that

the transition of the gate is acknowledged. The covering constraint is the following:
ERCCN®CERUQS.

That is to say that we must include the entire ER, and may only include states

from the ER or the corresponding QS. The resulting boolean equation is:
Vi=SA-ERAN-QS

This ensures that only one AND block is on at a time, so the transition can be
acknowledged by a transition on the output. In addition, the cover may only be
entered through the excitation region. This is to guarantee a single monotonic
transition, with no unacknowledged glitch in the function block. The entrance
constraint is

((s,s) e N)A(s¢ C)N (s € C)= (s € ER),
and the resulting boolean equation is
Vo = TRANS(x' — x, exist,((x, N(x,x') A =C(x) A C(x') N =ER(x")))

The final boolean equation for the violations is: V = V; Vv V5.

3.3.3 Correct covers
The valid cover BDD, VC, is constructed to include all implementations that do
not include any violating states and completely cover the corresponding excitation
region. In other words, we filter the cover BDD C' with the following conditions:

(1) CNV =0, and (2) C N ER = ER. The combined boolean equation is
VC = univy(x, (-C vV =V) A (mERV C)).

The function univ,(z, V'C) implements the universal quantifier. This is equivalent

to fz A f-;, and returns the portion of the predicate that is independent of the value

41

of x. This can be extended to iteratively operate on the vector x. The resulting
BDD represents all valid covers of the signal.

Figure 3.5 shows the resulting BDD for a SC implementation of the set region
for signal ¢ from Figure 3.4. Light arrows represent FALSE paths and dark arrows
represent TRUE paths. p, represents the y variable representing a in the first cube,
pnot, represents the y variable representing —a in the first cube, and p,0 represents
the x variable representing a in the second cube. There are six valid two-cube
covers for this region: a Vb, (a A —=b) Vb,aV (maAb),(aA=c)V (bA=c), (aN—bA
—¢) V (bA =c), (a N —=c)V (maAbA —c).

Figure 3.6 shows the results for the feedback control signal = in the SPDOR
example. The BDDs indicate that the pull-up stack can be enabled whenever a is
false, and can be further restricted to only those states where some combination
of x,7,and iy are false. Similarly, the pull-down stack must be on when a is
high, but can be further restricted to those states where x is high. The resulting
generalized C-element implementation is shown in Figure 3.7. Transistors shown
in lighter print are optional. While this example shows some of the flexibility
of the system, it should be noted that the end result is that this gate can be
implemented with an inverter. As shown in the results section, other examples

have many implementations of minimal size.

3.4 Results

The complete BDD timed circuit synthesis procedure shown in Algorithm 3.4.1
(see Figure 3.8) has been automated within the CAD tool ATACS. This algorithm
has been applied to the design of numerous timed circuit designs.

Synthesis results are shown in Table 3.1. The first column shows the number
of gC style solutions that were found by the BDD synthesis procedure that can
be implemented within the stack size limits. Most of the examples have a huge
number of possible implementations with four of fewer transistors in each stack
(“need decomp” is used to indicate that there is no valid implementation using

only four-stacks). However, since they are stored implicitly, keeping track of this

Figure 3.5. Valid cover for ¢ 1 for a standard OR gate.

42

43

VC for x+

AXi1i2]

Figure 3.6. Valid cover for SPDOR feedback gate.

Figure 3.7. Valid circuit for SPDOR feedback gate.

44

Table 3.1. Experimental results.

of Solutions

Synthesis Time

Examples <4 ‘ min | Implicit ‘ Single-Cube ‘ General
spdor 8192 1 011 .0068 .35
spdand 512 1 010 .0058 28
cnt 614656 1 .043 .096 1.03
mmuoptSV 1.3 x10%3 | 405 44 15 1.7
mmuopt 3.7 x10° 4 .089 .029 .65
slatch 1.3 x10'° 2 .10 .022 .83
elatch 9.4 x10" 4 13 .026 .85
SELopt need decomp 4 .53 .082 1.5
tsbm need decomp 4 5.0 FAIL 3.3
scsiSVT 3.2 x10° 18 037 .034 .67
lapb 16384 1 .023 .0098 43
lapb2 1.2 x10° 1 .26 078 1.1
lapb3 6.1 x10%° 2 2.1 1.6 20
lapb4 2,2 x10% 4 13.4 8.4 29
fifo 1.7 x10" 4 A7 .048 81
fifo2 1.9 x10%7 16 1.8 D 3.9
fifo3 2.1 x10% 64 2.2 9.1 23

45

46

many solutions is not difficult and is useful for technology mapping. The second
column shows the number of solutions for each example where each transistor stack
has its minimum size. Some of these have only one minimal solution, but many,
most notably eager with 2304, have multiple minimal solutions which will not be
found if explicit synthesis methods are used. The numbers in this table represent
the number of potential implementations for the entire circuit. This number is the
product of the possible covers for each individual excitation region. For example, in
the gC implementation of the SPDOR, the set region for x has 8 solutions, the reset
region has 2, each of the two set regions for a has 8 solutions, and the reset region
has 8 which makes a total of 8 x2x8x8x8 = 8192. The SC implementation is more
restricted so it only has 80 possible solutions. Filters have been employed to reduce
the set to those having reasonable implementations in CMOS technology (i.e., those
implementations which require transistor stacks of four or less.) It is interesting
to note that often, as in the case of the SPDOR gate, all valid implementations
are within the allowed stack size. The use of implicit methods not only improves
memory performance for large specifications, they also allow a parameterized family
of solutions to be produced. Possibilities for component sharing between functions
are also increased by the capacity to consider all valid implementations in parallel.

The final three entries in the table are the runtimes to synthesize these circuits
using the implicit approach, a heuristic single cube approach, and an exact multic-
ube approach. Although somewhat slower than the heuristic single cube algorithm,
the BDD synthesis method never fails, and in comparable runtime, finds BDD
representations for a large number of possible synthesis solutions. The heuristic
algorithm fails when multicube covers are required. The BDD method typically
takes more than an order of magnitude less time than the general algorithm while

still finding large numbers of solutions.

47

Algorithm 3.4.1 (Synthesize)
bdd_list Synthesize(RSG G) {
S = FindStateGraphBDD(G);
G = Haunt(G);
N = NextState(G);
Foreach z; in x{
Foreach z;x in {z; 1, z; L}{
C = Generate Cy;
If (¢ =)
QS (x;%) = existy(x',x; Nzt ANN);
ES(x;x) = existy,(x', —~x; Axj ANN);
} elsef
QS (xix) = existy(x', —x; A —xh AN);
ES(x;%) = existy(x',x; A =z AN);
}
Foreach ERy in ER{
Do {
if (9C) then
V=SA-ESAN-QS;
else{
Vi=SA-ER,N-QS;
Vo = TRANS (X' — x, exist,((x, N(x,x")A=C(x)ANC'(x')A\=ERy(x")));

V=WV Vy
}
VC = univy(x, (—C V=V) A (mER, Vv C));
If (VC =0)

C = C V Generate next Cy;
} While (VC = 0);
add VC to set_of results;
}
}
}

Return set_of _results

}

Figure 3.8. Function to synthesize circuit from a reduced state graph G

CHAPTER 4

CONCLUSIONS AND FUTURE WORK

One never notices what has been
done; one can only see what re-
mains to be done.

- Marie Curie, letter(1894)

This thesis presents a new implicit synthesis method for timed circuits which
utilizes BDD based algorithms and data structures to allow the synthesis of larger
timed circuit implementations. We formulated a MTBDD representations to repre-
sent the timed state spaces during timed state space exploration. We also described
a BDD representation of the reduced state graph which is derived alongside. We
use ghost transitions to preserve accurate signal enabling information. We have
developed BDD formulations and algorithms for both standard-C and generalized
C-element implementation styles. These algorithms find all valid covers for each
excitation region (if necessary, by transparently finding minimal multicube covers).

Although this algorithm has led to a substantial reduction in memory usage, this
has come at the cost of longer running times. We believe that this is not inherent
in the methodology and plan to explore ways of optimizing our implementation.
We would also like to extend the use of BDDs to other data structures in our
algorithm. Specifically, the stack used during state space exploration continues to
consume large amounts of memory. We attempted to synthesize lapb5 and fifos,
but exhausted the available memory rapidly due to explosive stack growth. Storing
the stack entries implicitly will hopefully reduce the size of the individual stack
frames, allowing even larger specifications to be explored. Finally, we would like to
research variable orderings and their affect on sharing, including possible methods

of reordering and heuristics for static orderings.

49

The two major advantages of the implicit synthesis method is that larger timed
systems can be designed and a parameterized family of solutions is found while
earlier algorithms merely found a single solution. Considering all possible valid
implementations will greatly facilitate technology mapping. In the future, we
plan to extend BDD based technology mapping algorithms for speed-independent

circuits [11, 18] to timed circuits.

REFERENCES

[1] ALUR, R. Techniques for Automatic Verification of Real-Time Systems. PhD
thesis, Stanford University, August 1991.

[2] BEEREL, P., AND MENG, T.-Y. Automatic gate-level synthesis of speed-
independent circuits. In Proc. International Conf. Computer-Aided Design
(ICCAD) (Nov. 1992), IEEE Computer Society Press, pp. 581-587.

(3] BEEREL, P. A., MYERs, C. J., AND MENG, T. H.-Y. Automatic synthesis
of gate-level speed-independent circuits. Tech. Rep. CSL-TR-94-648, Stanford
University, Novermber 1994.

[4] BELLUOMINI, W., AND MYERS, C. J. Efficient timing analysis algorithms for
timed state space exploration. In Proc. International Symposium on Advanced
Research in Asynchronous Circuits and Systems (Apr. 1997), IEEE Computer
Society Press.

[5] BERTHOMIEU, B., AND Di1Az, M. Modeling and verification of time de-

pendent systems using time petri nets. [IEEE Transactions on Software
Engineering 17, 3 (March 1991).

6] BozgAa, M., MALER, O., PNUELI, A., AND YOVINE, S. Some progress in

the symbolic verification of timed automata. In Proc. International Conference
on Computer Aided Verification (1997).

[7] BRUNVAND, E., AND SPROULL, R. F. Translating concurrent programs into
delay-insensitive circuits. In Proc. International Conf. Computer-Aided Design

(ICCAD) (Nov. 1989), IEEE Computer Society Press, pp. 262-265.

[8] BRYANT, R. E. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers 35, 8 (Aug. 1986), 677 691.

9] BRyanT, R. E. Binary decision diagrams and beyond: Enabling technologies
for formal verification. In International Conference on Computer-Aided Design
(1995), IEEE Computer Society Press.

[10] BurcH, J. R. Modeling timing assumptions with trace theory. In ICCD
(1989).

[11] BurNns, S. M. General condition for the decomposition of state holding
elements. In Proc. International Symposium on Advanced Research in Asyn-
chronous Circuits and Systems (Mar. 1996), IEEE Computer Society Press.

ol

[12] CHu, T.-A. Synthesis of Self-Timed VLSI Circuits from Graph-Theoretic
Specifications. PhD thesis, MIT Laboratory for Computer Science, June 1987.

[13] CHuU, T.-A., AND GLASSER, L. A. Synthesis of self-timed control circuits
form graphs: An example. In Proc. International Conf. Computer Design
(ICCD) (1986), IEEE Computer Society Press, pp. 565 571.

[14] CHUNG, E., AND KLEEMAN, L. An optimal approach to implementing
self-timed logic circuits from signal transition graphs. Australian Telecom-
munications Research 27, 2 (1993), 41 56.

[15] CLARKE, E., Fujita, M., AND ZHAO, X. Application of multi-terminal
binary decision diagrams. Tech. Rep. CMU-CS-95-160, Carnegie-Mellon Uni-
versity, 1995.

[16] CLARKE, E., MACMILLAN, K., ZHAO, X., FuJiTA, M., AND YANG, J.-Y.
Spectral transforms for large boolean functions with application to technology
mapping. In 30th Design Automation Conference (June 1993), pp. 54 60.

[17] CoaTEs, B., Davis, A., AND STEVENS, K. The Post Office experience:
Designing a large asynchronous chip. Integration, the VLSI journal 15, 3 (Oct.
1993), 341-366.

[18] CORTADELLA, J., KisHINEVSKY, M., KONDRATYEvV, A., LAvAGNO, L.,
AND YAKOVLEV, A. Technology mapping of speed-independent circuits based
on combinational decomposition and resynthesis. In Proc. European Design
and Test Conference (1997), pp. 98-105.

[19] DL, D. L. Timing assumptions and verification of finite-state concurrent
systems. In Proceedings of the Workshop on Automatic Verification Methods
for Finite-State Systems (1989).

[20] EBERGEN, J. C. Translating Programs into Delay-Insensitive Circuits. PhD
thesis, Dept. of Math. and C.S., Eindhoven Univ. of Technology, 1987.

[21] HAUCK, S. Asynchronous design methodologies: An overview. Tech. Rep.
TR 93-05-07, Department of Computer Science and Engineering, University of
Washington, Seattle, 1993.

[22] KONDRATYEV, A., KISHINEVSKY, M., LIN, B., VANBEKBERGEN, P., AND
YAKOVLEV, A. Basic gate implementation of speed-independent circuits. In
Proc. ACM/IEEE Design Automation Conference (June 1994), pp. 56 62.

[23] LavaceNo, L. Synthesis and Testing of Bounded Wire Delay Asynchronous
Circuits from Signal Transition Graphs. PhD thesis, U.C. Berkeley, Nov. 1992.
Technical report UCB/ERL M92/140.

[24] LEwis, H. R. Finite-state analysis of asynchronous circuits with bounded
temporal uncertainty. Tech. rep., Harvard University, July 1989.

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

[35]

[36]

52

MARTIN, A. J. Programming in VLSI: from communicating processes to
delay-insensitive VLSI circuits. In UT Year of Programming Institute on
Concurrent Programming, C. Hoare, Ed. Addison-Wesley, 1990.

MEenG, T. H.-Y., BRODERSEN, R. W., AND MEgsserscamiTT, D. G.
Automatic synthesis of asynchronous circuits from high-level specifications.
IEEFE Transactions on Computer-Aided Design 8, 11 (Nov. 1989), 1185-1205.

MoLNAR, C. E., FANG, T.-P., AND ROSENBERGER, F. U. Synthesis of
delay-insensitive modules. In 1985 Chapel Hill Conference on Very Large Scale
Integration (1985), H. Fuchs, Ed., Computer Science Press, pp. 67 86.

MoLNAR, C. E., Jones, I. W., Coates, B., AND LeExau, J. A FIFO
ring oscillator performance experiment. In Proc. International Symposium on
Advanced Research in Asynchronous Circuits and Systems (Apr. 1997), IEEE
Computer Society Press.

MyERs, C. J. Computer-Aided Synthesis and Verification of Gate-Level
Timed Circuits. PhD thesis, Dept. of Elec. Eng., Stanford University, Oct.
1995.

MyERs, C. J., Rokicki, T. G., AND MENG, T. H.-Y. Automatic synthesis

of gate-level timed circuits with choice. In Proc. 16th Conf. on Advanced
Research in VLSI (1995), IEEE Computer Society Press, pp. 42 58.

Nowick, S. M., AND DiLL, D. L. Automatic synthesis of locally-clocked

asynchronous state machines. In Proc. International Conf. Computer-Aided
Design (ICCAD) (Nov. 1991), IEEE Computer Society Press, pp. 318-321.

PAsToOR, E., AND CORTADELLA, J. Polynomial algorithms for the synthesis
of hazard-free circuits from signal transition graphs. In Proc. International
Conf. Computer-Aided Design (ICCAD) (Nov. 1993), IEEE Computer Society
Press, pp. 250 254.

Puri, R., aAND Gu, J. Asynchronous circuit synthesis; persistency and
complete state coding constraints in signal transition graphs. Int. Journal
Electronics 75, 5 (1993), 933-940.

R.I.BAHAR, FroHM, E. A., Gaona, C. M., HAcHTEL, G., MAcII,
E., PArDO, A., AND SOMENZI, F. Algebraic decision diagrams and their

applications. In International Conference on Computer Design (Nov. 1993),
IEEE, pp. 188-191.

Rokicki, T. G. Representing and Modeling Circuits. PhD thesis, Stanford
University, 1993.

Rokicki, T. G., AND MYERs, C. J. Automatic verificaton of timed circuits.
In International Conference on Computer-Aided Verification (1994), Springer-
Verlag, pp. 468-480.

[37]

[38]

[39]

[40]

[41]

53

UNGER, S. H. Asynchronous Sequential Switching Circuits. Wiley-
Interscience, John Wiley & Sons, Inc., New York, 1969.

VANBEKBERGEN, P., LIN, B., GOoOssENnNs, G., AND DE MAN, H. A
generalized state assignment theory for transformations on signal transition
graphs. In Proc. International Conf. Computer-Aided Design (ICCAD) (Nov.
1992), IEEE Computer Society Press, pp. 112-117.

YAKOVLEV, A. V., PETROV, A., AND ROSENBLUM, L. Synthesis of
asynchronous control circuits from symbolic signal transition graphs. In
Asynchronous Design Methodologies (1993), S. Furber and M. Edwards, Eds.,
vol. A-28 of IFIP Transactions, Elsevier Science Publishers, pp. 71 85.

Yun, K. Y., DiL, D. L., AND Nowick, S. M. Synthesis of 3D asyn-
chronous state machines. In Proc. International Conf. Computer Design
(ICCD) (Oct. 1992), IEEE Computer Society Press, pp. 346-350.

ZHENG, H. Specification and compilation of timed systems. Master’s thesis,
University of Utah, 1998.

https://www.researchgate.net/publication/2713158

